Category Archives: Insights and Advice

Using my experience as a consultant involved in various Department of Energy (DOE) processes, these articles will be my venue to share some insider tips and tricks about those federal energy and policy processes. Whether through detailing the intricacies of the federal rulemaking process, analyzing the energy policies coming through the Federal Register, or providing copy-editing advice for technical and/or government writing, the “Insights and Advice” series will highlight some best practices and provide the perspective from a career consultant to the DOE processes.

Deconstructing Units of Energy into Pizza, Fly Push Ups, and Grenades

When looking at energy use in everyday life situations, it is easy to overlook what the units used actually mean. When getting the electric bill in the mail, most people will simply compare the kilowatt-hours from last month to this month and note if their bill has gone up or down. When buying a new energy-efficient dryer, you know the fewer watts used the less energy it will be. The same mental comparisons are used all the time by people who do not have to deal with energy extensively– such as with the horsepower of a car or the calories in a sandwich.

However, it is all too common for people to forget the real significance of and differences between various units of measure related to energy and power use once they pass their high school physics class. Newscasters will constantly use kilowatts and kilowatt-hours as if they’re interchangeable (they’re not). Writers will misrepresent statistics online as if the difference between megawatts and gigawatts are not massive (they are).



For those of us that work in the energy industry, these numbers are much more tangible and easy to understand. However that does not describe a majority of citizens who are having these statistics thrown at them all the time, so this article will serve as a reference and allow you to re-up your energy statistics literacy.

The Basics

Energy vs. Power

The cardinal sin when dealing with energy units is confusing energy and power, a mistake that is unfortunately one of the most common as well. Even in mainstream news articles, it is not uncommon to see the total energy used for something to be listed in watts or vice versa (e.g., this article quotes the rate of energy use of a soccer stadium in kilowatts per hour, which you will shortly understand to be nonsensical if taken literally). So clearing up the confusion here is top priority.

The technical definitions of energy and power, according to the Energy Information Administration (EIA), are as follows:

Energy: The capacity for doing work as measured by the capability of doing work (potential energy) or the conversion of this capability to motion (kinetic energy)

Power: The rate of producing, transferring, or using energy, most commonly associated with electricity

Put simply, energy is the total work that is done while power is the rate at which that work is done. This concept can still be a bit tricky, so the easiest way to keep it straight is through metaphors. As one example, you can think of the relationship between energy and power as water flowing from a hose to a bucket. The volume of water that has been added to the bucket at any given point is comparable to the total energy use, while the rate that the water is flowing from the hose into the bucket can be considered the power. Another useful metaphor is to consider power to be the speed a car travels along a highway, while the total distance traveled would be the total energy. The main point is to think of power as a rate that is occurring with time (gallons of water per second, miles per hour) while the energy can then be thought of as that rate multiplied by the amount of time to get the total quantity (gallons of water per second times total seconds = total gallons of water, miles per hour times total hours = total miles driven).

To bring it to real world applications of energy and power, think of a light bulb in the lamp of your living room. The light bulb might be rated at 60 Watts, which is the power rating. 60 Watts is the rate of energy use of the bulb, and if you leave it operating for 2 hours then the total energy use is 60 Watts times 2 hours or 120 Watt-hours. Watt-hours, often divided by 1,000 to be expressed in kilowatt-hours, are the total energy use you will see come up on your monthly power bill (for more real-world applications of power and energy calculations, see the recent blog post on the energy used in various Thanksgiving turkey cooking methods).

Once you understand the difference between energy and power, you will start to see them used improperly all too often.

SI units vs. Imperial units vs. every other type of unit

To anyone who has to deal with the variety of units available to measure the same quantity, it can seem very confusing and unnecessary. Certainly it would be easier if everything and everyone used the same units and no conversion was needed. Unfortunately, that is not the world we live in for a variety of reasons– everyone has seen or heard how hard it has been to try to get the metric system adopted in the United States.

The reality is that there are many different units because these units originated at different times, by different people/industries, for different uses. The development of the metric system during the French Revolution was the first attempt to create internationally agreed upon units. Prior to that time, the world was a much larger place and it was not uncommon for units that even carried the same name to vary in actual measurement depending on where you were and who you asked. As science and trade expanded with the ever-shrinking global stage, units became more and more standardized until the International System of Units (SI) was created in the mid-20th century. These units are standard and widely accepted across the scientific landscape, no small victory for unit standardization.

Even with that success, however, many industries were already set in their way. For example, even though the automotive industry could use the widely accepted wattage to describe the power of an engine, people already understood horsepower in the context of a car. Because of the inertia and history of units like this, the implementation of the SI system did not take off in all sectors. While this may have been the easiest choice for those industries, it leaves the layperson with an alphabet soup of units and abbreviations to wrap their head around. Hopefully this article will do a small part to clearing that all up.

Prefixes

Another important part of the tangled web of units, particularly among SI and metric units, is the use of standard prefixes. Prefixes are used to take a standard unit and modify it by a power of ten. A familiar example would be the difference between a meter and a kilometer. Kilo- is the standard prefix for a multiplier of 10^3 or 1,000, which is why a kilometer equals 1,000 meters. These types of prefixes, summarized in the table below, can be applied across all sorts of units and the meaning is always the same– look at the power of ten multiplier and apply it to the unit.

The prefixes at the extreme of either end (such as yotta- and yocto-) are rarely used because they are so large/small that they are not needed to describe real, tangible energy/power quantities you’ll come across. The ones that are commonly used include giga-, mega-, kilo-, milli-, and micro-, and in fact some of the units described in the below tables will have those prefixes because the power-of-ten-adjusted units are more commonly used in certain applications than their base units.

Units to know

Energy

With all that background out of the way, we can look at 24 various units used to measure energy. Some of these are more common and will be familiar to most people, others are more niche and relate to specific industries or fields of study, while others still are rarely used but are still interesting to consider. Again keep in mind you may run across more units made up of the measures below combined with one of the prefixes above– simply use the prefix multiplier to modify the designated unit in the below table.

This first table will list these energy-measuring units, from smallest to largest, along with the manner in which they are typically used, the qualitative fundamental equivalence by definition, and the standard quantitative reference.

Table 2: Units of Energy Across Industries and Applications

UnitAbbreviationTypical useFundamental equivalenceStandard Reference
electronvolteVUsed by astronomers to measure energy of electromagnetic radiation, as well as to describe the difference in atomic/molecular energy states.

Also used by particle physicists to measure mass (based on E=mc 2 )
Amount of energy one electron acquires from accelerating through one volt1.602 x 10^ -19 Joules
RydbergRyUsed by chemists and physicists to claculate the energy levels in that are absorbed or emitted as photons as electrons move between energy levels of a hydrogen atomGround-state energy of an electron in the Bohr model for the hydrogen atom13.605693009 eV
HartreeEhUsed in calculating energy of molecular orbitsThe electic potential energy of the hydrogen atom in ground state (and thus double E h )27.211 eV
ergergNot commonly used today, but can still be found in old European scientific papersAmout of energy used when a force of one dyne is exerted over one centimeter 100 nanojoules
jouleJUsed in electricity, mechanics, thermal energy, and other basic sciences on a small scaleAmount of energy transferred to an object when a force of one newton acts on the object in the direction of its motion through a distance of one meter (i.e., one Newton-meter)As the SI unit of measurment for energy, considered the base use unit of all energy and is the common reference for other units of energy
foot-pound forceft*lbUsed to describe muzzle energy of a bullet in small arms ballistsAmount of energy transferred to an object when applying one pound of force over a distance of one foot1.35581795 Joules
thermochemical calorie**cal thUsed in chemistry to describe the energy released in a chemical reactionAmount of heat/energy needed to raise the temperature of 1 gram of water 1 o C (at 17 o C)4.8140 Joules
gram calorie**calUsed in chemistry to describe the energy released in a chemical reactionAmount of heat/energy needed to raise the temperature of 1 gram of water 1 o C (from 14.5 to 15.5 o C)4.8155 Joules
British thermal unitBTUUsed as a common unit of energy content by industry and analysts to compare energy sources or fuels on an equal basisAmount of heat/energy needed to raise the temperature of one pound of water by 1 o F1,055 Joules
Watt-hourWhUsed commonly in electrical applications Amout of energy used when one Watt of power is expended for one hour3,600 Joules
food Calorie, or kilocalorie**kcalIn common practice, nutritional calories are referring to these kilocalories (or Calorie, capitalized) as a means to measure the relative heating/metabolizing energy contained within a foodAmount of heat/energy needed to raise the temperature of 1 kilogram of water 1 o C (from 14.5 to 15.5 o C)1,000 thermochemical calories
gram of TNTg of TNTUsed to compare the relative size of explosions based on their release of energyAmout of energy in the explosive yield of one gram of Trinitrotoluene (TNT)4,184 Joules
(The real use of a gram of TNT would result in a range of energy outputs between about 2,700 and 6,700 Joules, so the actual conversion was somewhat arbitrarily defined as 4,184 Joules or exactly 1 kilocalorie)
megajoulesMJUsed to describe the energy content of liquefied petroleum gas (LPG) and natural gas in the context of gas heaters in buildingsOne million times the amount of energy transferred to an object when a force of one Newton acts on the object in the direction of its motion through a distance of one meter (i.e., one Newton-meter)1.0 million Joules
horse-power hourhphUsed in railroad industry to describe a performance-use basis when companies lend locomotives to others (e.g., Railroad A lent Railroad B a 4,000 horsepower locomotive to use for 2 hours, Railroad B now owes Railroad A a payback favor of 8,000 horsepower-hours)Amount of work that can be done (or energy that can be expended) by a horse over one hour2.686 x 10^6 Joules
kilowatt-hourkWhThe common unit of measure used as a billing unit for electricity delivered to consumersAmount of energy if a constant power of one kilowatt is transmitted for one hour3.6 x 10^6 Joules
kilogram of hard coalkg of hard coalUsed within the coal industry to compare the energy output of other fuel types to the output of a standard measure of coalAmount of energy emitted when burning one kilogram of coal7,000 kilocalories
ThermthmUsed by natural gas companies to convert volume of gases to its equivalent ability to heatAmount of heat energy from burning 100 cubic feet of natural gas100,000 BTU
gasoline gallon equivalentGGEUsed to compare the cost of gasoline with other fuels that are sold in different units for internal combustion enginesAmout of energy equivalent to that found in one liquid gallon of gasoline5.660 pounds of natural gas
gigajoulesGJUsed on a global scale to compare the amount of energy used by different nations over given time periodsOne billion times the amount of energy transferred to an object when a force of one Newton acts on the object in the direction of its motion through a distance of one meter (i.e., one Newton-meter)1.0 billion Joules
ton of TNTton of TNTUsed to describe the energy released in an explosionAmount of energy released in the detonation of a metric ton of TNT4.184 Gigajoules
barrels of oil equivalentBOEUsed by oil and natural gas companies (and analysts of those industries) that have access to both fuel types to describe the overall energy content of their reserves in a simple, single numberAmount of energy equivalent to that found in a barrel of crude oil (42 gallons); for natural gas, the conversion is to about 6,000 cubic feet of natural gas5.8 million BTU*
Ton of coal equivalentTCEUsed to describe very large amounts of energy output on a national or global scale with coal as the reference pointAmount of energy generated from burning one metric ton of coal0.697 tonne of oil equivalent (according to World Coal Association)
0.700 tonne of oil equivalent (according to International Energy Agency)
tonne of oil equivalentTOEUsed to describe very large amounts of oil or natural gas, either in terms of trade and transportation or natural production/consumptionAmount of energy equivalent to that found in one tonne (i.e., a metric ton, or 1,000 kilograms) of crude oil7.33 BOE (according to SPE)
41.868 GJ (according to OECD)
10.0 kcal (according to IEA)*
quadquadUsed by the Department of Energy and others in the field to discuss the total energy production and use across the globeEqual to exactly 10 15 BTU, i.e., one quadrillion BTU (quad for short)1,000,000,000,000,000 BTU

*These values are approximate because different grades of oil/gas have slightly different energy equivalents, and thus different agencies/bodies sometimes use slightly different measures of them.

**It’s important to note the difference between calories and Calories– Calories with a capital C are the nutrtional Calories everyone is familiar with counting on diets. These Calories are actually known as kilocalories and are 1000 thermonuclear calories, so do not mix up Calories and calories…

To make some more sense of this array of units, both massively large and incomprehensibly small, the following table puts the units into some more context. In this table, you’ll find a real-world example of what can be done with a single unit of that energy measurement, how many Joules it equates to for comparison’s sake, and the multiplier needed to get from the previous unit of energy to that one.

Click to enlarge

Power

The same exercise can be done for units of power (or rate of energy over time), as there are just as many different units for various industries, applications, and technical necessities. For power, we’ll focus on 17 of the more commonly used units– though remember you might come across all of them modified by the previously discussed prefixes.

Again, this first table will list all the power-measuring units, from smallest to largest, along with the manner in which they are typically used, the qualitative fundamental equivalence by definition, and the standard quantitative reference.

Table 4: Units of Power Across Industries and Applications

UnitAbbreviationTypical useFundamental equivalenceStandard Reference
erg per seconderg/sNot commonly used today, but in old scientific papers could be used to express power on an atomic scaleAmout of power used when a force of one dyne is exerted over one centimeter in one second100 nanowatts
milliwattmWUsed to measure the power needed by very small electrical components, such as small lasers to read CDsEqual to one thousandth of a Joule per second, or the work/power needed to hold an object's velocity constant at one meter per second against a constant force of one thousandth of a Newton0.001 Watts
dBmdBmUsed as a measure of power in wires in radio, microwave, and fiber-optic networksdBm is measured as the decibals relative to one milliwatt on a logarithmic scale, where the dBm of a power P in millwatts equals 10 x log(P)Not applicable because of the log-based scale. While 1 dBm is about 1.3 milliwatts, 50 dBm is 100 Watts and -50 dBm is 10 nanowatts.
Foot-pounds per minuteft*lb/minCommonly used as a mesaure of power in the foot-pound-second (FPS) unit system, which was the most common scientific unit system in English publications until the mid-1900s. The work done to apply a force of one pound-force over a linear dispalcement of one foot over the course of a minuteConsidered the base use unit for power in the FPS system, others reference the foot-pound per minute
kilowatt-hour per yearkWh/yEnergy consumption of some household appliances is often expressed based on the kilowatt-hours used over the course of a year given certain assumptions (kWh/y of a washing machine based on 180 standard cleaning cycles). While this may appear to be an energy unit and not a power unit, the time component of hour of kWh and the year cancel out to leave you with a measure of power-- which is what this measure really is, an understandable way to compare the power rating of various appliances Based on the assumptions given by the particular appliance label, each additional kWh/y is another expected kilowatt-hour to show up on your power bill over the course of an entire year with typical appliance use1 kilowatt-hour per year divided by 8,760 hours per year, or about 0.114 Watts
British Thermal Units per hourBTU/hOften used as the power rating for furnaces and other large heating systemsAmount of power needed to raise the temperature of one pound of water by 1 o F over the course of an hour1,055 BTU/hr divided by 3,600 seconds/hr, or 1055/3600 Joule/second which equals about 0.293 Watts
WattWUsed as the basic measurement of electrical power in small household-sized applicationsEqual to one Joule of energy per second, or the work/power needed to hold an object's velocity constant at one meter per second against a constant force of one NewtonAs the SI unit of measurement for power, considered the base use unit of all power and is the common reference for other units of power
kilocalories per hourkcal/hUsed to measure the metabolic rate of the human body, that is the amount of Calories your body will burn per hour doing various activities (e.g, exercising, sleeping, etc.)The amount of work needed to increase the temperature of one liter of water by 1 o C over the course of an hour1,000 calories per hour
calories per secondcal/sUsed by chemists when describing the rate of heat/energy transfer in chemical reactionsAmount of power needed to raise the temperature of 1 gram of water 1 o C (at 17 o C) over the course of 1 second4.184 Watts
Metric horsepowerPSUsed for advertising in the same applications as mechanical horsepower but in countries who use the metric system (often leading to confusion and mixing up the units, though the official horsepower ratings of engines are typically conservative enough that it's not overpromising power0Equal to the power required to raise a mass of 75 kilograms over a distance of one meter in one second75 kilogram*meters per second
Mechanical HorsepowerhpUsed to measure the output shaft of an engine, turbine, or motor in applications from cars and trucks down to chain saws and vacuum cleanersWhen invented by James Watt (inventor of the steam engine), it was derived by calculating the average work a pony at a coal mine could do in a minute and then increasing that by 50 percent33,000 foot pounds per minute
Electrical horsepowerhp(E)Used in the United States for the nameplace power output capacity of electrical motorsIntended to be equivalent in use to the mechanical horsepower, but is defined as exactly 746 Watts746 Watts
kilowattkWTypically used to describe power output of engines, motors, and other machinery. The work done to apply a force of one thousand pounds-force over a linear dispalcement of one foot over the course of a minute1,000 Watts
Tons of refrigerationTRUsed to rate the power of commercial refrigeration systemsThe power needed to freeze a short ton of water at 0 o Cover a 24 hour period12,000 BTU/hr
Boiler horsepowerhp(S)Used to denote a boiler's capacity to deliver steam to a steam engineEqual to the thermal energy rate required to evaporate 34.5 pounds of fresh water at 212 o F in one hour33,475 BTU/h
megawattMWUsed to describe the power used by very large electical equipment and vehicles, such as warships, super colliders, electric trains, or large commercial buildingsThe work done to apply a force of one million pounds-force over a linear dispalcement of one foot over the course of a minute1,000,000 Watts
gigawattGWDenotes the power output of large power plants and electrical capacity on a national scaleThe work done to apply a force of one billion pounds-force over a linear dispalcement of one foot over the course of a minute1,000,000,000 Watts

Again, a useful way to make sense of all these power units is to give them more meaningful context. The next table shows some of the real world examples of these different levels of power output, converts them all to Watts for the sake of comparison, and the multiplier between two consecutive units.

Click to enlarge

Conclusion

Armed with the knowledge of these units of energy and power, you’ll be well prepared to tackle statistics anew– you’ll have useful context for how much energy was in the recent 5,000 barrel oil spill on the Keystone Pipeline (using the above information, we can calculate that 5,000 barrels of oil is over 30,000 Gigajoules– or equivalent to the average annual electricity consumption of over 700 American households), or you’ll also have not so useful (but fun!) context for the energy content of a gallon of gasoline (the same as over 127 slices of large cheese pizza or 30 kg of TNT).  Either way, being literate in your scientific and energy-related units will make you a more informed consumer of the news– if only everyone editing the news could do the same and stop using ‘Watts per hour’!

Sources and additional reading

A Megajoule or MJ Probably Isn’t What You Think: Elgas

Aqua-calc: Conversions and Calculations

Arkansas State Energy Profile: Energy Information Administration

Ask Trains from December 2007: Trains Magazine

Atomic Units: Nature

Barrel of Oil Equivalent: Investopedia

Blast effects of external explosions: Isabelle Sochet

Bluetooth range and Power: Electronics Stack

Brief history of the SI: National Institute of Standards and Technology

British Thermal Units (BTU): Energy Information Administration

By gum! Chewing to power your hearing aid: CNBC

Calorie: Encyclopedia Britannica

Choose the right charger and power your gadgets properly: Wired

Coal conversion statistics: World Coal

Coal equivalent: European Nuclear Society

CODATA Recommended Values of the Fundamental Physical Constraints

Conversion factors: Organization of Petroleum Exporting Countries

Electron Volt: Universe Today 

Elephants: San Diego Zoo

Energies in Electron Volts: Hyper Physics

Energy Conversion Calculators: Energy Information Administration

Energy Examples: Genesis Now

Energy Units: APS Physics

Energy Units and Conversions: Dennis Silverman

erg: WhatIs.com

Eu Energy Labels: What does kWh/Annum mean?

Exploding Laptop Batteries

Foot-Pound Force Per Minute: eFunda

Frequently Asked Questions: Energy Information Administration

Glossary: Energy Information Administration

Horsepower-hour: Collins Dictionary

Horsepower: Encyclopedia Britannica

How Hard Does It Hit? Jim Taylor

How Horsepower Works

How Many Calories Are Burned By Coughing? LiveStrong

How Many Calories Do You Burn Doing Everyday Activities?

How Many Flies Would It Take To Pull A Car? Neatorama

How much electricity does a solar panel produce? Solar Power Rocks

How much energy do my household appliances use? Energy Guide

Is it really worth my time to eat that last grain of rice?

Joule: techopedia

Launching satellites: Science Learning Hub

Measuring energy: IEEE 

Metric Conversions

Nanotechnology Introduction: Nanotechnology Now

NIST Guide to the SI: National Institute of Standards and Technology

Nonconventional Source Fuel Credit

One Calorie is Equivalent to One Gram of TNT In Terms of Energy: Today I Found Out

Papa John’s Nutritional Calculator

Physical Phenomena: University of Sydney

Physlink

Projectiles, Kinetic/Muzzle Energy and Stopping Power

Report of the British Association for the Advancement of Science

Rydberg: Wolfram Research

Rydberg Constant: National Institute of  Standards and Technology

Rydberg Unit of Energy: Energy Wave Theory

The Adoption of Joules as Units of Energy: FAO

Tonne of coal equivalent: Business Dictionary

Tonne of oil equivalent: Organization for Economic Cooperation and Development

Turning sweat into watts: IEEE

Understanding Energy Units: Green Building Advisor

Unit Conversion Factors: Society of Petroleum Engineers

Unit converter: International Energy Agency

USB Flash Drives: AnandTech

watt-hour (Wh): WhatIs.com

What’s a hartree? National Institute of Standards and Technology

What is a Joule? Universe Today

What is a GJ? Natural Resources Canada

What is a Ton of Refrigeration: Power Knot

What is a Watt, Anyway? Building Green

What is a Watt Hour? SolarLife

What is resting metabolic rate?

Why Do We Use a Dumb Unit to Measure Explosions? Gizmodo

About the author: Matt Chester is an energy analyst in Washington DC, studied engineering and science & technology policy at the University of Virginia, and operates this blog and website to share news, insights, and advice in the fields of energy policy, energy technology, and more. For more quick hits in addition to posts on this blog, follow him on Twitter @ChesterEnergy.  

Advice for Effective Public Comments in the Federal Rulemaking Process

Having spent a few years earlier in my career entrenched in the rulemaking process behind a number of regulations from the Department of Energy concerning appliance standards, I am able to empathize with the teams of analysts at federal agencies that are tasked with receiving and addressing the feedback that comes in during public comment periods. During every rulemaking process, there are real humans reading every single public comment received (even when those comments number in the thousands), cataloging the specific concerns from the stakeholders, conducting research and analysis regarding the points that were brought up, and ultimately responding to those comments– either by detailing why the existing analysis already addresses the comment or, if the stakeholder comment has successfully done its job, adjusting the analysis during the next round of the rulemaking to account for the issues brought up in the comment.

While submitting a comment in response to the federal rulemaking process can seem intimidating, the truth is that every rulemaking process receives comments from every sort of stakeholder, large and small, with the widest range of expertise on the topics possible (see previous article on how the rulemaking process works and what the function of the public comment period is here). Those involved in the regulatory process know to expect multi-page comment submissions with loads of data and testimonials from powerful trade associations or advocacy groups, but it is also common to receive more pointed and specific comments from concerned private citizens who don’t have any experience in the relevant industry, but simply have their own opinions and concerns. The beauty of the public rulemaking process, however, is that every single comment must be summarized in the next step of the rulemaking, along with a response as to how the new analysis addresses the concerns, no matter who submits it. With that in mind, regardless of whether you are representing a larger organization or just your personal interests as a citizen, what follows are six methods you can employ that will ensure your comment most effectively influence the federal rulemaking process.



1. Be accurate

This piece of advice should go without saying, but rest assured I have found that it needs to be said. If a comment submitted to the federal agency is found to have a basic inaccuracy in it, then the rest of the comment on that topic will be called into question and it can potentially carry less weight. An underlying inaccuracy in the comment will make responding to, or dismissing, the whole comment all too easy. So while it may be overly obvious, if you hope to make an impact on a regulatory rulemaking then be sure to verify the accuracy in everything you say.

 

2. Be specific with issues and provide alternatives

If you want your comment to be addressed specifically in the analysis, be sure to include specifics in the comment. Don’t say that something would be detrimental to businesses– state exactly what the detriment would be and why. Don’t state that a discussed technology would not be technologically or economically feasible– state what technology would be feasible and note what exactly is preventing the original technology from being so. Don’t state that a pricing analysis is unrepresentative of the market– describe how and why the analysis is off.

The point is that if the federal agency is given a vague reason for why the analysis is ‘bad’ or ‘off,’ but not given any specifics, then there is nothing tangible to address. The rebuttal to the non-specific comment can simply be to restate the original analysis and reasons behind it. However if a specific reasoning and alternative is instead provided, then you are giving the federal agency something meaty to address. The subsequent analysis must either move towards your alternative or give details about why that alternative is incorrect. But if your alternative is airtight and there are not holes to poke in it, then you will likely find success in shifting the analysis behind the rulemaking.

 

3. Address the issues the rulemaking asks about– but don’t be restricted to those topics

When reviewing a rulemaking document, whether in the early stages with a Request for Information (RFI) or later during the Notice of Proposed Rulemaking (NOPR) stage, you will often find specific issues called out on which the agency behind the rulemaking is seeking comment. These issues are numbered for ease of finding them, and sometimes (but not always!) listed in a single place at the end of the notice. If you do not see a list at the end of the notice, be sure to go through the document carefully to find them all in-line, where they’ll appear as in the example below.

Source

When the agency is pointing out these specific issues on which it requests comment, that shows where the most impact of a comment might be received. These are the issues that they might have the least amount of information (or they have information but recognize it’s outdated) concerning, or where they recognize there is considerable debate. Regardless of the reason, all comments on each of these numbered issues end up getting aggregated to get a clear picture of the available information and data before a decision on the direction of the rulemaking is made (though it is important to note that it is not decided by what received the most comments, but rather the accuracy and quality of the comments outweigh the quantity of comments received on an issue). If your position on the rulemaking is related to any of these specifically identified issues, make sure to frame your comment in direct response to the question asked (it even helps to note by number which issue your comment is addressing).

With all of that said, you should not feel that the identified issues are the only ones eligible for response or that the agency will not put equal weight behind comments regarding other aspects of the analysis. You might have comment or information on a topic on which the agency wasn’t focused or didn’t realize was controversial. So while it is important to fit your comments into the box of the issues identified by the notice if they are relevant to those issues, do not feel restricted to those topics. You just might be the only one to bring up this new issue, influencing the next stage of the rulemaking to address it more specifically.

 

4. Include hard data

The best way to back up your comment and encourage a specific response in the next stage in the analysis is to include your own data as evidence. Perhaps you think this data was overlooked by original analysis, or maybe you think the data that was included originally does not tell the whole story. Either way, if your data supports a change in the analysis and a different conclusion, then providing the full set of that data in your public comment is the best way to influence the rulemaking. Doing so will force the next stage of the analysis to either include that data (and thus changing the course of the analysis towards your desired outcome) or at the very least will require the next stage of the analysis to refute your data.

 

5. Include sources

Similar to including your own hard data, crucial to an effective public comment is providing evidence towards your points. Providing a comment that breaks down to be essentially subjective is unlikely to be effective, but if you can demonstrate your points with sources– e.g., scientific studies, experimental results, industry information, or marketing analysis, then the comment will make a bigger splash. The more you can ‘show’ your point rather than ‘tell’ it, the more substance and weight your comment will have.

 

6. Offer to follow up

An under-utilized strategy with regards to public comments on the public rulemaking process is making yourself available to the federal agency. The public comment stands on the record as a written statement of your thoughts and concerns on the rulemaking, but in commenting you can also offer to discuss the points further with the agency pursuing the rulemaking. Doing so may result in you being interviewed in the next fact-finding stage of the analysis, or you might also be invited to the next public meeting on the rulemaking to discuss your concerns further. These conversations can be the most valuable tool for really getting your point across and making sure the agency understands the basis of your viewpoint. Written comments only have the opportunity for a single back and forth between commenter and government agency, but conversations allow for the complete back-and-forth required for full understanding between the parties.

 

Conclusion

While there is no guarantee any single public comment will change the course of a particular rulemaking, if you follow these six guidelines then there is a greater chance that your comment will be well-received by the agency and carry the weight of consideration it deserves. If you have any additional questions on this process, don’t hesitate to reach out in the comments below or by contacting me directly.

Additional Reading

A Guide to the Public Rulemaking Process: Office of the Federal Register

Frequently Asked Questions: Office of Information and Regulatory Affairs

Notice and Comment: Justia

Notice-and-Comment Rulemaking: Center for Effective Government

Policy Rulemaking for Dummies

Rulemaking Process and Steps to Comment: The Network for Public Health Law

Tips for Submitting Effective Comments: Regulations.gov

 

 

About the author: Matt Chester is an energy analyst in Washington DC, studied engineering and science & technology policy at the University of Virginia, and operates this blog and website to share news, insights, and advice in the fields of energy policy, energy technology, and more. For more quick hits in addition to posts on this blog, follow him on Twitter @ChesterEnergy.  

Best from “Today in Energy” in 2017

Among the wide array of regular articles the Energy Information Administration (EIA) releases, as detailed in this post on navigating EIA’s data sets , one of the most varied and interesting is the Today in Energy (TIE) series of articles released every weekday. According to EIA, TIE articles “provide topical, timely, short articles with energy news and information you can understand and use.”   

What makes TIE particularly compelling to read each day is that the topics it covers range across the spectrum of energy-related topics. Where most of the other reports released by the EIA are restricted to a specific fuel type or survey of consumers, TIE articles bring all of these topics from across EIA into relevant, digestible, and fascinating briefs to give a broad spectrum of information to its readers.



Further, TIE articles feature both stories that are relevant and important to current events (e.g., Hurricane Irma may cause problems for East Coast energy infrastructure) and stories that provide useful background information that can be referenced for years to come (e.g., Crude oil distillation and the definition of refinery). Not only that, but keeping up with TIE articles is a great way to keep up with other EIA publications as well, such as when articles such as the Annual Energy Outlook, International Energy Outlook, or Short-Term Energy Outlook are posted, TIE often includes an overview of some of the relevant conclusions of those articles and a link to read the full version.

To prove how valuable TIE articles can be for all these reasons, I’ve picked a sampling of 13 of my favorite TIE articles thus far in 2017 that are particularly interesting and demonstrate the cross-cutting topics offered by TIE. The ones I’ve chosen are based on the topics I find the most engaging, as well as the graphics that are the most clever and elegant.

1. EIA’s AEO2017 projects the United States to be a net energy exporter in most cases

January 5, 2017

Released the same morning as the Annual Energy Outlook 2017 (AEO2017), this article demonstrates the tendency of TIE to alert the readers of the latest EIA publications, while also providing a good overview to new readers as to what AEO2017 is and what the main takeaways from the report were.

2. Canada is the United States’ largest partner for energy trade

March 1, 2017

Utilizing the latest data from the U.S. census bureau, this article details the energy imports/exports between the United States and Canada broken out by U.S. region and fuel type and demonstrates TIE articles on the topic of trade. Most interesting is the graph showing the difference in electricity trade over the years from each of four U.S. regions.

Source: Energy Information Administration

3. U.S. energy-related CO2 emissions fell 1.7% in 2016

April 10, 2017

This TIE article from April breaks down carbon dioxide (CO2) emissions data, from the Monthly Energy Review, from 2005 to 2016 by both emitting fuel and industry, while also introducing carbon intensity as a metric and shows the progress made in reducing energy-related carbon intensity over the previous decade. As climate change heats up as an issue in domestic politics, industry, and foreign affairs, this type of window into U.S. CO2 emission data can prove invaluable.

4. Most U.S. nuclear power plants were built between 1970 and 1990

April 27, 2017

I chose this article because it provides a fascinating chart that shows the initial operating year of utility-scale generation capacity across the United States, broken out by fuel type, to demonstrate the relative age of each source of electricity generation and, in particular, the relative old age of the U.S. nuclear generating capacity, while also showing the explosion of non-hydroelectric renewable generation since the turn of the century.

Source: Energy Information Administration

5. American households use a variety of lightbulbs as CFL and LED consumption increases

May 8, 2017

An example of a TIE article getting into the use of energy inside of U.S. homes, this piece takes information from the 2015 Residential Energy Consumption Survey (RECS) to show how residential lighting choices have been trending in the face of increased regulation and availability of energy-efficient lighting technologies, highlighting the differences depending on renter vs. owner occupied, household income, and whether or not an energy audit has been performed.

6. More than half of small-scale photovoltaic generation comes from residential rooftops

June 1, 2017

Utilizing data from the Electric Power Monthly, this article breaks out the use of small-scale solar power systems based on the geographic location and type of building, highlighting the rapid rise these systems have experienced in the residential sector, as a great example of renewable energy in the residential sector.

7. Dishwashers are among the least-used appliances in American homes

June 19, 2017

Again taking data from RECS, this TIE article provides insights on the frequency that certain appliances are in American homes, how often they go unused in those homes, pervasiveness of ENERGY STAR compliant appliances, and other data regarding residential energy use of appliances. This article also includes a plug for the 2017 EIA Energy Conference that was to be held a week after its publication, again showing how good of a job reading TIE articles daily can do of making sure you know the latest happenings at EIA.

8. Earthquake trends in Oklahoma and other states likely related to wastewater injection

June 22, 2017

A reason I find this TIE article particularly interesting is that it goes beyond just the energy data collected by EIA and synchs with outside data from the Earthquake Catalog to show additional effects of energy production in the environment. This kind of interplay of data sources demonstrates how powerful EIA data collection can be when analyzed in proper context.

9. Monthly renewable electricity generation surpasses nuclear for the first time since 1984

July 6, 2017

I highlight this TIE article for two reasons. First, the graphic below showing the monthly generation of nuclear compared with the cumulative generation of renewable energies—and the highlighting of 2016-17 particular—is really illuminating. This graph is a great demonstration of the power of data visualizations to convey the data and the message of that data. Second, the reason behind that graphic—that monthly renewable generation surpassed nuclear generation for the first time in over three decades—is a remarkable achievement of the renewable energy sector, showing the trending direction of the U.S. fuel mix going forward.

Source: Energy Information Administration

10. California wholesale electricity prices are higher at the beginning and end of the day

July 24, 2017

This TIE article was identified because of how interesting the topic of wholesale electricity prices varying throughout the day can be. As net metering and residential production of electricity increases across the United States, this will be a topic those in the energy fields will want to keep a keen eye on.

11. Among states, Texas consumes the most energy, Vermont the least

August 2, 2017

Grabbing data from the State Energy Data System, this TIE article presents a graphic displaying the most and least overall energy use as well as the most and least energy use per capita among the 50 states and the District of Columbia. Using color to demonstrate the relative consumption and consumption per capita creates a pair of really elegant visuals.

Source: Energy Information Administration

 

12. Solar eclipse on August 21 will affect photovoltaic generators across the country

August 7, 2017

As everyone was scrambling to find their last minute eclipse glasses, this TIE article detailed where, and how much, the total solar eclipse of August 2017 was to diminish solar photovoltaic capacity and an assessment of how local utilities will be able to handle their peak loads during this time (a nice follow up TIE article on this also looked at how California dealt with these issues on the day of the eclipse, increasing electricity imports and natural gas generation).

Source: Energy Information Administration

13. U.S. average retail gasoline prices increase in wake of Hurricane Harvey

September 6, 2017

Another example of TIE addressing energy-related current events, this article not only provides the information and analysis of the effect that Hurricane Harvey had on retail gasoline prices, but it also provides the context of why the effect was being felt, how it compared to previous hurricanes, and what could be expected moving forward.

 

 

If you’ve been sufficiently convinced that Today in Energy articles would be an engaging read to start the day, you can sign up for an email subscription by following this link.

 

 

About the author: Matt Chester is an energy analyst in Washington DC, studied engineering and science & technology policy at the University of Virginia, and operates this blog and website to share news, insights, and advice in the fields of energy policy, energy technology, and more. For more quick hits in addition to posts on this blog, follow him on Twitter @ChesterEnergy.  

Navigating the Vast EIA Data Sets

The Energy Information Administration (EIA) is an independent arm the Department of Energy (DOE) that is tasked with surveying, analyzing, and disseminating all forms of data regarding energy in the United States. Further, EIA is a politically isolated wing of the DOE– meaning it is there to provide independent and factual data and analysis, completely independent from the partisan decision makers in Washington or the political inclinations of those in charge of at the top of DOE. Because that is the case, you can be confident the data put out by EIA is not driven by any agenda or censored in favor of a desired conclusion.

Thus for anyone with even a passing interest in the national production and use of energy, EIA really is a treasure trove of valuable information. However, those who are unfamiliar with navigating the EIA resources can easily get overwhelmed by the vastness of the data at their fingertips. Additionally, even seasoned veterans of the federal energy landscape might find it difficult to find the exact piece of data for which they are digging within the various reports and data sets made publicly available on the EIA website. So regardless of your experience level, what follows is a brief guide to what type of information is available as well as some advice as to how to make the best use of your time surfing around EIA.gov.



Types of data available

One of the really fabulous things about the EIA data sets is that they cover every kind of energy you can imagine. The energy categories you can focus into include, but are not limited to, the following:

Within these energy categories, you can look at the trends of production, consumption, imports/exports, and carbon dioxide emissions going back years (oftentimes even decades) and also modeled as a forecast into the coming years. Most data sets will have tools to automatically manipulate the data to change between units (e.g., total barrels of oil vs. barrels of oil per day), or even manipulate data trends (e.g., go from weekly data to 4-week moving averages to 10-year seasonal averages). Depending on the type of data, these numbers are regularly updated weekly, monthly, and/or yearly. If there’s a topic of particular interest, there’s a good chance there’s a report with the data on it being released at regular intervals– some of the more prominent reports are highlighted below.

Regularly updated reports

EIA releases a regular stream of reports that serve to update the publicly available data at given intervals. Some of the more prominent reports are listed below, and they are typically used to update all of the energy categories previously mentioned:

  • The Monthly Energy Review (MER) is a fairly comprehensive report on energy statistics, both from the past month and historically back a number of decades. Published during the last week of every month, the MER includes data on national energy production, consumption, and trade across petroleum, natural gas, coal, electricity, nuclear, renewables– as well as energy prices, carbon dioxide emissions, and international petroleum.
  • The Short-Term Energy Outlook (STEO) is another monthly EIA report, this one released on the first Tuesday following the first Thursday of the month. The STEO includes data on much the same topics as the MER, with the inclusion of some international energy data, and it also includes monthly and yearly projections for the rest of the current year and all of  the next year based on EIA’s predictive models. The inclusions of these forecasts makes for particularly useful data sets for anyone who might be trying to stay a step ahead of the energy markets. Also of particular interest for statistically-minded people out there is a regular comparison of numbers between the current STEO forecast and the previous month’s forecast. These comparisons show which way the model shows data to be trending, with the more significant ones called out in the report and noted with reasoning behind the changes.
  • The Annual Energy Outlook (AEO), like the STEO, provides modeled projections of energy markets– though the AEO focuses just on U.S. energy markets, models these annual forecasts long-term through the year 2050, and is released every January. The other aspect of the AEO that makes it particularly interesting is that its modeled forecasts, in addition to a reference case forecast, include different assumptions on economic, political, and technological conditions and calculate how those various assumptions might affect the outlook. For example, the 2017 AEO includes projections based on high economic growth vs. low economic growth, high oil price vs. low oil price, high investment in oil and gas resources and technology vs. low investment, and a projection that assumes a complete roll-back of the Clean Power Plan.
  • The International Energy Outlook (IEO) provides forecast energy market data consistent with the AEO, but regarding the international energy market through 2040.
    • With forecasts in both the STEO and the AEO, an understanding of exactly what is meant by the forecasts is imperative. The forecasts and projections do not necessarily reflect what a human prognosticator within EIA thinks could, should, or will happen– rather it demonstrates what the predictive models calculate given the best possible and unbiased inputs available. This difference is a subtle one, but if you ever find yourself questioning “does the person behind this report really think this is going to happen?”, recognize that some nuance exists and the reason you are skeptical might have not yet been able to be statistically included in the model.
  • The State Energy Data System (SEDS) is published once annually and breaks down national energy use, price, spending, and production by sector and by individual states. Within each of these categories, you can also break down the data by energy type (e.g., coal vs. natural gas) and by primary energy use vs. electric power generation. Having this granularity is useful to further dig into if certain energy trends are regional, restricted to certain climates, or are in response to specific state policies.

While they are not necessarily releasing new and specific data on a regular basis, two other EIA articles of note are worth pointing out because of the interesting stories and analyses they tell:

  • Today in Energy (TIE) comes out every weekday and gives a quick and readable article with energy news, analyses, and updates designed to educate the audience on the relevant energy issues. TIE frequently features graphs and charts that elegantly demonstrate the data in an easy to understand but also vastly elucidating way. One of the real advantages to reading TIE each day, though, is they often include tidbits from all the previously mentioned regularly updated reports, as well as other major releases or EIA conferences, enabling you to keep up with the newest information from EIA (click here for a post on the best TIE articles of 2017 to get you started).
  • This Week in Petroleum (TWIP) is an article that comes out every Wednesday that is very similar to the TIE articles, but focuses on the world of petroleum specifically and provides crucial insights on topics such as drilling, oil company investments, retail prices, inventories, transportation of crude and refined petroleum products, and more.

If any of these regular reports are of interest to you, you can sign up to get email alerts anytime these (or a number of other) reports are released by EIA by visiting this page. If you don’t know which reports you’d want but you want to keep an eye on what EIA is putting out, you can also simply subscribe to the “This Week at EIA” list that will once a week send you an email to notify you of ALL the new EIA productions from that week.

Finding specific data

While keeping up with all the regular reports from EIA is immensely useful, what brings many people to the EIA website is the search for a specific piece of data. You might want to see a history of average gasoline prices in a certain region of the country, find the projection of how much solar capacity is expected to be added in the next few years, track how much petroleum product is being refined in the Gulf Coast, or countless other facts and figures. Below you’ll find a few strategies you can employ to track down the information you seek.

Navigating the menus

EIA.gov has a useful menu interface through which you can usually navigate to your desired dataset easily.

Source: Homepage of EIA.gov
  • The “Sources & Uses” drop down will be where you can navigate to data sets about specific fuel sources and energy use;
  • The “Topics” drop down highlights the analysis on data by EIA as well as economic and environmental data; and
  • The “Geography” drop down is where you can navigate data by state or look at international data.
Source: Homepage of EIA.gov

Navigating from these menus is fairly self-explanatory, but let’s walk through the example of finding the recent history of gasoline prices in the Gulf Coast region of the United States. Gasoline is a petroleum product, so we would click on “Petroleum & Other Liquids” under the “Sources & Uses” menu.

Once on the “Petroleum & Other Liquids” page, the information we’re interested in would be under the data menu with the “Prices” link.

Source: Landing page for EIA.gov/petroleum

You’ll then see a listing of various regular releases of petroleum product price reports and data sets. Since we’re interested in Gulf Coast gasoline prices, we’ll click the third link for “Weekly retail gasoline and on-highway diesel prices.”

Source: EIA’s Petroleum and Other Liquids Prices

Clicking on this report will bring up the below interactive table. The default view will be to show U.S. prices averaged weekly. The time frame can be adjusted to monthly or annual prices (we’ll keep it at weekly). The location of the prices can be changed to allow viewing of data by region of the country or by select states and cities (we’ll change it to the Gulf Coast). The interactive table then displays the most recent week’s data as well as the previous five weeks (note: for ‘gas prices’ as is most often reported in the media and related to people filling up the gas tanks in their cars, we’re interested in the row titled ‘Regular’).

Source: EIA’s Weekly Retail Gasoline and Diesel Prices

If you’re interested in going further back in time then shown in the interactive table, the ‘View History’ links can be clicked to bring up an interactive table and graph going as far back as EIA has data (1992, in this case), shown below. Alternatively, if you want to have the raw data to manipulate yourself in Microsoft Excel, then click the ‘Download Series History’ link in the upper left (I’ll download and keep this data, perhaps handy for later in this post).

Source: EIA’s Weekly Gulf Coast Regular All Formulations Retail Gasoline Prices

Note in the above interactive chart there is the built-in abilities to view history by weekly/monthly/annual data, to download the source data, or the adjust the data to be a moving average or seasonal analysis.

If you find a page with the type of information you’ll want to reference regularly or check in on the data as they update, be sure to bookmark the URL for quick access!

STEO Custom Table Builder

Another useful tool is the STEO Custom Table Builder, which can be found here. The Custom Table Builder allows you to find all of the data that is included in the monthly STEO report (e.g., U.S. and international prices, production, and consumption for petroleum products, natural gas, electricity, coal, and renewable energy; CO2 emission data based on source fuel and sector; imports and exports of energy commodities; U.S. climate and economic data broken down by region; and more). This data can be tracked back to 1997 or projected forward two years on a monthly, quarterly, or annual basis. All you need to do is go to the Custom Table Builder, shown below, and select the options you wish to display.

Source: EIA’s Custom Table Builder

As an example, let’s use the STEO Custom Table Builder to determine the projected of how much solar power capacity in the near term. Solar would fall under the ‘U.S. Renewable Energy’ category, so click to expand that category, then expand the ‘Renewable Energy Capacity,’ and you’ll see the STEO has data for data for the capacity of large-scale solar for power generation, large-scale solar for other sectors, and small-scale solar for other sectors.

Source: EIA’s Custom Table Builder

Select all the data relevant to solar data, select the years you want (we’ll look at 2017 thus far through the end of 2018), and what frequency you want the data (we’ll look at monthly). Then hit submit, and the following will be the custom table built for you.

Source: EIA’s Custom Table Builder

Note: The forecast data is indicated in the Custom Table Builder with the numbers shown in italics. The above data was pulled before the September 2017 STEO was published, so the projections begin with the month of August 2017.

For this example, we’ll want to then download all the data to excel so the total solar capacity can be added up and analyzed. Click the ‘Download to Excel’ button at the upper right to get the raw data, and with a few minutes in Microsoft Excel you can get the below chart:

Source of Data: EIA.gov, pulled on September 10, 2017

This graph, made strictly from STEO Custom Table Builder data, shows the following:

  • As of July 2017, large-scale solar generation capacity was only 0.3 GW outside of the power sector and 23.7 GW, while small-scale solar generation capacity was 14.8 GW.
  • Together, solar power capacity in the United States added up to 39.1 GW as of July 2017.
  • By the end of 2018, total solar power capacity is projected to rise to 53.7 GW (an increase of 14.5 GW, or 37%), according to the EIA’s August 2017 STEO.

Search function

Using a search bar on some websites can be surprisingly frustrating, but luckily the EIA search function is very accurate and useful. So, I have found that, when in doubt, simply doing a search on EIA.gov is the best option.

Perhaps I want to track the amount of petroleum products in production on the Gulf Coast. This information is not in the STEO report, so the Custom Table Builder won’t be of use. And maybe I don’t immediately see how to navigate to this specific information on the menus. I would type into the search bar the data I’m seeking as specific as possible—‘weekly gulf coast refiner gasoline production’:

Source: Homepage of EIA.gov

Doing the above search yields the below results, of which the first one looks like just what we need.

Source: EIA.gov

Click on that first link, and ta-da! We’re taken to the weekly gasoline refinery report for the Gulf Coast (referred to as PADD 3). Again, you see the options here to look at the history back to 1994 both on a weekly and a 4-week average basis, use the chart tools to analyze moving averages or seasonal analyses, or download the data to utilize in your own way.

Source: Weekly Gulf Coast Refiner and Blender Net Production of Conventional Motor Gasoline

Contact experts

As a last resort, the EIA website offers resources to contact should you have questions or issues navigating the data. The people behind the EIA data are civil servants who are intelligent and very dedicated to their job and making sure you get the accurate and relevant information you need. So in a pinch, head to the Contact Us page and find the topic on which you need help from a subject matter expert.

If you want an alternative to going straight to the people at EIA, however, feel free to contact me as well and I’d be happy to try and help you track down information on EIA.gov as well. Use any of the contact methods mentioned in the Contact Page of this site, or leave a comment on this post.

Using the data

I have found that it is not at all an exaggeration to say that the world (of energy data, at least) is at your fingertips with EIA’s publicly available data. To demonstrate, I’ll walk through a quick example of what you can find.

If we take the previously gathered weekly data for Gulf Coast gasoline prices and gasoline production, we can plot them on the same graph:

Source of Data: EIA.gov, pulled on September 10, 2017

By taking advantage of the publicly data on EIA’s website, we can notice some trends on our own. In the above, there is a drastic increase in Gulf Coast gasoline prices, coincident with a large decrease in Gulf Coast refiner production of gasoline that bucks the month-long trend of production generally increasing. This is a curious change and would prompt investigation as to the reason why. Luckily, several of EIA’s Today in Energy articles already points out this trend and offers explanation—all related to the effects of Hurricane Harvey on the Gulf Coast petroleum systems (Article 1, Article 2, Article 3). Just goes to show that one of the best way to stay abreast of trends and information in the energy world is to follow EIA’s various reports and analyses.

 

Updated on September 28, 2017

 

 

 

About the author: Matt Chester is an energy analyst in Washington DC, studied engineering and science & technology policy at the University of Virginia, and operates this blog and website to share news, insights, and advice in the fields of energy policy, energy technology, and more. For more quick hits in addition to posts on this blog, follow him on Twitter @ChesterEnergy.  

Policy Rulemaking Process for Dummies

Calling this article “for dummies” is tongue-in-cheek, because the inner workings of government and the development of public policy are shrouded in mystery for most people. However this mystery does not persist because the process is too difficult for the average person to understand (my rant about how foolish it is that this part of the policy process is not taught in middle schools or high schools is for another day). In fact, the beauty of the rulemaking process is that it is designed to engage those outside the government world.

After getting personally involved in the rulemaking process to determine energy efficiency standards for various electronic products, I learned what occurred behind the curtains for these federal energy regulations– just how involved the process of determining these regulations were, how many different parties came into play, and how backed in data, testing, analysis, and public feedback these final regulations were. Many resources exist that explain the whole rulemaking process in more detail and completeness than I will, and a few of those resources can be found at the end of this post, but as someone who spent several years on the inside I will provide a brief overview of the process and a few insights I picked up along the way.



What is a Rulemaking?

A rulemaking is the process that is mandated for creating federal regulations, including the analysis of the effects of a potential regulation and the solicitation of public feedback along the way. Rather than having lawmakers themselves create the specific regulations for certain topics, Congress instead authorizes federal agencies to dive into the details and research, analyze, and dictate the final details of those rules. The regulations produced at the end of a rulemaking have all the effect of a law, and all existing federal regulations are listed in the Code of Federal Regulations (CFR). For anyone looking to find out the particulars of any federal regulation, the CFR is the repository to reference. Federal regulations cover a broad range of topics—from energy to telecommunications to patents and more, with these topics being listed in the CFR’s Table of Contents.

The Beginning of the Rulemaking Process

While the federal agencies, such as the Department of Energy (DOE) or the Environmental Protection Agency (EPA), are the main entities that control the rulemaking process, no regulations can be issued without proper statutory authority being first granted. Even though the regulations posted in the Federal Register (FR) are attached to Executive Branch agencies, the authority to issue these regulations comes from Congress. Each regulation proposed and ultimately issued has an authority section somewhere in the beginning so the reader can trace its history and why it was initiated.

Two types of authority—Left is where Congress passed a law to initiate a specific rulemaking proces (DOE’s regulation of the energy efficiency of metal halide lamp fixtures, 79 FR 7746); Right references the broad authority granted by Congress to regulate certain areas (EPA’s regulation of air pollutants, 82 FR 39712)

The Congressional authority for a rulemaking can either come from the law that first created the federal agency and dictated which areas it had jurisdiction to regulate (such as the above right, where EPA references the authority to regulate air pollutants from the general powers granted to EPA by Congress), or Congress can pass a law that specifically directs an existing agency to go through the rulemaking process and set regulations for a particular topic of interest (such as the above left, where DOE references the authority from a law that Congress passed instructing DOE to establish energy conservation standards for certain appliances by a given date).

Stepping Through the Rulemaking Process

Make no mistake about it—the rulemaking process for federal regulations is very long and in depth. Nothing is done haphazardly, with the people behind it conducting extremely extensive factfinding and analysis. The amount of cumulative effort that goes into regulating, for example, the energy efficiency of a lightbulb or ceiling fan is mindboggling. While the process behind each rulemaking could differ depending on the regulation’s history, complexity, urgency, importance, or politics, the generally expected process is outlined as follows:

Notice of Proposed Rulemaking

The Notice of Proposed Rulemaking (abbreviated as either NOPR or NPRM) is often the first official document published that announces the beginning of the rulemaking process. Included in the NOPR is a preamble detailing the goal of the rulemaking, the authority granting the agency the power, and the relevant dates and contact information for the rulemaking; the supplemental information section that discusses the initial framework, background data, preliminary analysis, and merits of the proposal; and a preview of what the regulation language would look like in the CFR. The NOPR is not the final regulation, but rather serves to inform the public about the initial findings of the analysis based on the preliminary information collected and provide the public stakeholders the opportunity to provide feedback on those findings (more on that later).

There do exist a couple of exceptions where the NOPR won’t be the first notice from an agency regarding the rulemaking process:

  • An agency might receive a petition for rulemaking from an interest group or member of the public, making the case for why a specific regulation is needed. The agency might then publish that petition in the FR to solicit comments on whether a rulemaking on that topic should be pursued.
  • Alternatively, an agency may, for particularly complex or critical rulemaking, choose to publish a preliminary document in the FR, such as an Advanced Notice of Proposed Rulemaking (ANOPR) or a Framework Document. The goal of publishing either of these documents would be to solicit public feedback earlier on in the information gathering and analysis to ensure the initial framework set up for analysis is headed in the right direction. Neither of these documents are mandatory, but when a potential regulation might have additional complications then the use of these early publications ensure those issues can be addressed thoroughly.
  • Lastly, there are times where an agency initiates a negotiated rulemaking. When this happens, the agency will invite the stakeholders and major players to meetings to try and reach an agreement on the terms of a proposed rule. These meetings will include representatives from multiple viewpoints on the topic, and if a consensus can be reached then the agency may endorse those terms as a basis for the proposed rule.

Comment Period

After a NOPR (or earlier preliminary document) is published in the FR, the agency will request comments from the public during an official comment period. These comments can be either in agreement or in opposition, and they can pertain to the rulemaking generally or to a specific part of the analysis. The typical comment period will last 30 to 60 days, though it can vary. More complex rules might have longer comment periods to allow stakeholders enough time to digest and respond to the proposed rulemaking, or the public can even request the comment period be extended if there are extenuating circumstances (though if the agency does not find there to be good reason to do so, they do not have to grant this request). Additionally, if the agency finds that comments received were not of the type and quality needed to move forward with the next stage of the analysis, the comment period can be re-opened. The agency might also find that the initial round of comments brought up new and complicated issues that requires further public comment. In these instances, the agency can open a second comment period to allow reply comments on the newly arisen issues, or alternatively the agency might publish a second NOPR instead of moving onto the Final Rule.

What is most important to remember about the comment period is that this is one of the best opportunities for you, as either a private citizen or a member of an organization, to directly impact and influence the regulations that will affect you.

Final Rule

After the completion of the NOPR, the agency will ultimately publish a Final Rule in the FR. The format of the Final Rule will look very similar to that of the NOPR, with the same general sections and analyses. However, the ‘Dates’ section will no longer dictate when the comment period will close—rather it will indicate the date that the new regulation is effective (generally within 30 days of publication).  The Final Rule now represents the new law of the land and will include a section of what changes need to be made to the CFR (as well as the effective date)—these changes can be a whole new section to the CFR, removing existing sections, or piece-by-piece edits to CFR text. This changing of the CFR text is the final step in the rulemaking process.

Congressional Review

In accordance with the Congressional Review Act, all Final Rules are subsequently reviewed by Congress. If both the House and Senate pass a resolution of disapproval of a regulation within 60 days (without Presidential veto), the Final Rule becomes void and cannot be republished in its existing state. Such overturning of Final Rules is typically uncommon, however, as Congress only successfully exerted this power one time from its inception in 1996 through 2016 (though the unique political climate in 2017 led to the Congressional Review Act to be successfully invoked 14 times, leading some to debate the merits of retaining this Congressional power and a bill proposed in the Senate to repeal it).

Despite the Congressional Review Act, the role of Congress in the rulemaking process is typically to simply grant the regulatory powers to the agencies, leaving the details and analysis to the experts employed by the agencies.  It would be naïve to think, however, that the final direction ultimately chosen at the end of a rulemaking was not influenced by politics. After analyzing and presenting all the facts on the table, the final direction resides with the priorities and policy preferences of the leaders of the agency and, by extension, the Executive Branch.

How you can participate

As stated earlier, one of the key components of a federal regulation that separates it from a law is the built-in mechanism to solicit feedback from the public. There are a few different ways this feedback is collected, each with their own advantages.

Public Comments

As mentioned earlier, after each NOPR, private citizens and interest groups alike are engaged to comment on the proposed rule, enabling them to directly affect the final regulations in a way not typical of all public policy. There are several primary goals of collecting these public comments:

  • They give citizens, interest groups, companies, and any other affected group the opportunity voice their position on the potential rule and how it might affect them by providing information the agency might not have been able to gather on its own;
  • They help the agency to improve the final regulations by considering this previously undiscovered information or vetting the information it did gather; and
  • They reduce the likelihood that stakeholders find issue with the regulations and bring those complaints to the courts.

To accomplish these goals, the continued engagement (both formal and informal) of the public is critical. Those who are submitting comments, though, should take note that the process dictated by what position receives the greatest volume of comments. Rather, the content of each comment is added into the public record of the rulemaking along with the data, expert opinions, and other facts. The comments are your opportunity to convince the agency that there is additional data to consider or new arguments to address. These comments can shift the direction of the rulemaking if they are factual, demonstrable, and convincing, as all comments made on the public record are then mentioned and specifically addressed in the subsequent publication stage—either agreeing with them or presenting reason to refute them. Later, I plan on writing a blog post that will give some tips and tricks on how to make public comments as effective as possible at influencing the rulemaking (update: read blog post on how to make effective public comments here).

Interviews

While preparing any of the public notices, the federal analysts might contact stakeholders (interest groups, affected companies, etc.) to be interviewed about the facts behind the regulation. Engaging in these conversations before the publication of the NOPR and Final Rule allows for a constructive and in-depth back-and-forth where the stakeholder can work to convince the analysts about their point-of-view. When these interviews occur, they are often the best opportunity for a stakeholder to convey their arguments and influence the rulemaking.

Public Hearings

Another way these key stakeholders are engaged by the rulemaking process is through public hearings. These hearings often occur after each NOPR or preliminary notice, though they are only required by certain agencies. The agency will specifically invite the key stakeholders to attend, though they are open to the public for anyone with an interest in the rulemaking. Public hearings are another opportunity where back-and-forth discussions can occur, both for the agency to explain the proposal and answer questions about the analysis that has been put forth and for the stakeholders to argue their cases in person. The other unique aspect of these public meetings is they allow for an on-the-record dialogue between the different stakeholders themselves, should there be disagreement among them.

Keeping Informed

If you want to keep up with potential new rulemakings that are of interest to you, the FR allows you to subscribe to customized daily updates. You can have all FR notices from a specific agency emailed to you every day they become available, or you can even subscribe based on keywords—regardless of which agency it comes from. To subscribe, create an account on federalregister.gov and then add subscriptions at this link.

Example of what an email from the Federal Register will look like if you subscribe to DOE notices

Additionally, at least once a year every agency publishes a regulatory agenda. This agenda will outline the planned regulatory and deregulatory actions for the coming season or year. If there is a particular agency whose regulations are of interest to you, follow this link to read the list of current regulatory items on the agenda.

 

Sources and Additional Reading:

A Guide to the Rulemaking Process- Prepared by the Office of the Federal Register

The Federal Rulemaking Process: An Overview– Congressional Research Service

Regulations and Rulemaking Process FAQ- Office of Information and Regulatory Affairs

Learn the Steps in the Federal Rulemaking Process

About the Rulemaking Process- United States Courts

Flowchart of the Federal Rulemaking Process- Citizen.org (this resource is more in depth than the title ‘flowchart’ will make you think—but a great, thorough resource)

From two specific federal agencies of interest to the topics in this blog:

Appliance & Equipment Standards: Department of Energy Regulatory Process

The Basics of the Regulatory Process: United States Environmental Protection Agency

 

Related Posts:

Federal Register Notice: Costs and Benefits of Net Energy Metering: Request for Information

Federal Register Notice: Test Procedure for Distribution Transformers: Request for Information

Article updated on October 10, 2017

 

 

About the author: Matt Chester is an energy analyst in Washington DC, studied engineering and science & technology policy at the University of Virginia, and operates this blog and website to share news, insights, and advice in the fields of energy policy, energy technology, and more. For more quick hits in addition to posts on this blog, follow him on Twitter @ChesterEnergy.